• KSAN
  • Contact us
  • E-Submission
ABOUT
BROWSE ARTICLES
EDITORIAL POLICY
FOR CONTRIBUTORS

Articles

Original Article

A Test for Psychobiologic Entropy Model on Cancer Related Fatigue among Patients with Solid Tumors

Korean Journal of Adult Nursing 2016;28(1):1-12.
Published online: February 29, 2016

1Chonnam National University Hwasun Hospital, Hwasun

2Department of Nursing, Honam University, Gwangju

3College of Nursing, Chonnam National University · CRINS, Gwangju, Korea

Corresponding author: Choi, Ja Yun College of Nursing, Chonnam National University, 5 Hak-dong, Dong-gu, Gwangju 501-746, Korea. Tel: +82-62-530-4943, Fax: +82-62-225-3307, E-mail: choijy@chonnam.ac.kr
• Received: September 25, 2015   • Accepted: February 9, 2016

Copyright © 2016 Korean Society of Adult Nursing

This is an Open Access article distributed under the terms of the Creative Commons Attribution Non-Commercial License (http://creativecommons.org/licenses/by-nc/3.0) which permits unrestricted non-commercial use, distribution, and reproduction in any medium, provided the original work is properly cited.

  • 23 Views
  • 0 Download
  • 1 Crossref
  • 1 Scopus
next
  • Purpose
    The purpose of this study was to test a Winningham's psychobiologic entropy model (PEM) on cancer related fatigue (CRF) among patients with solid tumors.
  • Methods
    Participants consisted of 213 patients with solid tumors recruited from December, 2012 through June, 2013, in a university hospital, in Hwasun, South Korea. Primary symptoms, adjustment, physical activity, status of nutrition and fatigue were measured using structured questionnaires. Collected data were analyzed using SPSS 21.0 and AMOS 21.0 programs.
  • Results
    The modified model tested provided a reasonable fit to the data (x2=65.80 [df=30, p<.001], TLI=.92, CFI=.95, RMSEA=.08, SRMR=.07). Primary symptoms (dyspnea, anxiety, depression and insomnia) had direct positive effects on CRF. Adjustment and status of nutrition showed indirect negative effects on CRF. However, the impact of physical activity was not significant. These variables explained 49.2% of the variance of CRF among solid tumor patients.
  • Conclusion
    The findings demonstrate that the tested model explain some CRF among solid tumor patients and warrant future research considering the cancer-related clinical factors of the given population.
Figure 1.
Hypothetical model from the Winningham's psychobiological-entropy model.
kjan-28-1f1.jpg
Figure 2.
Path diagram for the modified model.
kjan-28-1f2.jpg
Table 1.
Descriptive Statistics of the Observed Variables (N=202)
Variables Range M±SD Skewness Kurtosis
Diarrhea - 0.63±1.52 2.88 8.25
Pain 0~10 1.86±2.62 1.20 0.17
Dyspnea 1~5 0.43±1.07 2.51 5.52
Nausea/vomiting 0~4 0.33±0.63 2.51 6.71
Anxiety 0~3 0.71±0.57 0.74 -0.06
Depression 0~3 1.01±0.63 0.41 -0.50
Feelings of social isolation 1~5 2.42±0.72 0.26 -0.24
Insomnia 0~4 1.06±0.90 0.94 0.17
Nutritional status 1~4 1.96±0.99 0.86 0.46
Hemoglobin - 11.64±1.63 -0.26 0.00
Adjustment 1~4 2.75±0.47 -0.42 -0.22
Fighting spirit 1~4 2.34±0.51 -0.74 0.91
Hopeless 1~4 2.66±0.69 -0.31 -0.26
Fatalistics 1~4 2.36±0.76 -0.18 -0.72
Anxious preoccupation 1~4 2.57±0.65 -0.30 -0.01
Physical activity 1~3 1.59±0.63 0.61 -0.58
Fatigue 0~10 3.34±2.39 0.44 -0.78
Fatigue level 0~10 4.00±2.54 0.13 -1.01
Fatigue impact 0~10 3.01±2.59 0.56 -0.77
Table 2.
Goodness of Model Fit Indices (N=202)
Model df x2 (p) TLI CFI RMSEA SRMR
Criterion ≥.00 Low (≥.05) ≥.90 ≥.90 ≤.08 ≤.08
Hypothetical model 31 164.18 (<.001) .71 .80 .15 .16
Modified model 30 65.80 (<.001) .92 .95 .08 .07

TLI=Tuker-Lewis index; CFI=comparative fit index; RMSEA=root mean square error of approximation; SRMR=standardized root mean square residual.

Table 3.
Effects of Predictive Variables in the Modified Model (N=202)
Endogenous variables Exogenous variables β (p) SE CR (t-value) SMC SDE (p) SIE (p) STE (p)
Primary symptoms Biological energy -.28 (<.001) ) .04 -4.02 .311 -.28 (.001) - -.28 (.001)
Adaptive energy -.42 (<.001) ) .06 -5.35   -.42 (.003) - -.42 (.003)
Physical activity Biological energy .05 (.511) .05 0.66 .053 .05 (.511) .06 (.005) .11 (.144)
Adaptive energy -.05 (.595) .08 -0.53   -.05 (.587) .09 (.010) .05 (.559)
Primary symptoms -.23 (.019) .12 -2.34   -.23 (.012) - -.23 (.012)
Fatigue Biological energy - - - .490 - -.20 (.001) -.20 (.001)
Adaptive energy - - -   - -.29 (.003) -.29 (.003)
Primary symptoms .69 (<.001) ) .34 9.85   .69 (.003) .01 (.165) .70 (.003)
Physical activity -.06 (.313) .23 -1.01   -.06 (.261) - -.06 (.261)

β=standardized regression weights; SE=standard errors; CR=critical ratios; SMC=squared multiple correlations; SDE=standardized direct effects; SIE=standardized indirect effects; STE=standardized total effects.

  • 1.Mock V, Atkinson A, Barsevick AM, Berger AM, Cimprich B, Eisenberger MA, et al. Cancer-related fatigue. Clinical practice guidelines in oncology. Journal of the National Comprehensive Cancer Network: JNCCN. 2007;5(10):1054-78.
  • 2.Hofman M, Ryan JL, Figueroa-Moseley CD, Jean-Pierre P, Morrow GR. Cancer-related fatigue: the scale of the problem. Oncologist. 2007;12(1):4-10. http://dx.doi.org/10.1634/theoncologist.12-S1-4.
  • 3.Horneber M, Fischer I, Dimeo F, Rüffer JU, Weis J. Cancer-related fatigue: epidemiology, pathogenesis, diagnosis and treatment. Deutsches Ärzteblatt International. 2012;109(9):161-72. http://dx.doi.org/10.3238/arztebl.2012.0161.
  • 4.Winningham ML, Nail LM, Burke MB, Brophy L, Cimprich B, Jones LS, et al. Fatigue and the cancer experience: the state of the knowledge. Oncology Nursing Forum. 1994;21(1):23-36.
  • 5.Bower JE, Lamkin DM. Inflammation and cancer-related fatigue: mechanism, contributing factors, and treatment implications. Brain, Behavior, and Immunity. 2013;30:48-S57. http://dx.doi.org/10.1016/j.bbi.2012.06.011.
  • 6.AI-Majid S, Gray P. A biobehavioral model for the study of exercise interventions in cancer-related fatigue. Biological Research for Nursing. 2009;10(4):381-91.
  • 7.Choi JY, Kang HS. Influencing factors for fatigue in cancer patients. Journal of Korean Academy Nursing. 2007;37(3):365-72. http://dx.doi.org/10.1177/1099800408324431.
  • 8.Pearson EJ, Morris ME, McKinstry CE. Cancer-related fatigue: a survey of health practitioner knowledge and practice. Supportive Care in Cancer 2015;;[Epub ahead of print]..
  • 9.Winningham MThe role of exercise in cancer therapy. In: Eistinger M, Watson RW, editors. Exercise and disease. Boca Raton, FL: CRC Press; 1992. p. 63-70.
  • 10.Zordan R, Manitta V, Nandurkar H, Cole-Sinclair M, Philip J. Prevalence and predictors of fatigue in haemo-oncological patients. Internal Medicine Journal. 2014;44(10):1013-7. http://dx.doi.org/10.1111/imj.12517.
  • 11.Nail LM, Winningham ML. Fatigue and weakness in cancer patients: the symptom experience. Seminars in Oncology Nursing. 1995;11(4):272-8.
  • 12.Husain N, Cruickshank K, Husain M, Khan S, Tomenson B, Rahman A. Social stress and depression during pregnancy and in the postnatal period in British Pakistani mothers: a cohort study. Journal of Affective Disorders. 2012;140(3):268-76. http://dx.doi.org/10.1016/j.jad.2012.02.009.
  • 13.Bentler PM, Chou CP. Practical issues in structural modeling. Sociological Methods and Research. 1987;15(1):78-117. http://dx.doi.org/10.1177/0049124187016001004.
  • 14.Kim YJ, Kim JY, Choi IR, Kim MW, Rhodes VA. The index of nausea, vomiting, and retching(Korean translation). Journal of Korean Academy Adult Nursing. 2000;12(2):278-85.
  • 15.Zigmond AS, Snaith RP. The hospital anxiety and depression scale. British Medical Journal. 1983;67(6):361-70. 16. Shin JS, Lee YB. The effects of social supports on psychosocial well-being of the unemployed. Korean Journal of Social Welfare1999;37:241-69.
  • 17.Cho YW, Song ML, Morin CM. Validation of a Korean version of the insomnia severity index. Journal of Clinical Neurology. 2014;10(3):210-5. http://dx.doi.org/10.3988/jcn.2014.10.3.210.
  • 18.Bauer J, Capra S, Ferguson M. Use of the scored patient-generated subjective global assessment(PG-SGA) as a nutrition assessment tool in patients with cancer. European Journal of Clinical Nutrition. 2002;56:779-85.
  • 19.Lee MSRelationship between breast cancer and coping style or emotional adaptation [master thesis]. Seoul: Seoul National University; 1997.
  • 20.Oh JY, Yang YJ, Kim BS, Kang JH. Validity and reliability of Korean version of International Physical Activity Questionnaire (IPAQ) short form. Korean Journal of Family Medicine. 2007;28(7):532-41. http://dx.doi.org/10.4082/kjfm.2012.33.3.144.
  • 21.Mendoza TR, Wang XS, Cleeland CS, Morrissey M, Johnson BA, Wendt JK, et al. The rapid assessment of fatigue severity in cancer patients: use of the brief fatigue inventory. Cancer. 1999;85(5):1186-96.
  • 22.Valentine AD, Meyers CA. Cognitive and mood disturbance as causes and symptoms of fatigue in cancer patients. Cancer. 2001;92(6 Suppl):1694-8.
  • 23.Porock D, Beshears B, Hilton P, Anderson C. Nutritional, functional, an emotional characteristics related to fatigue in patients during and after biochemotherapy. Oncology Nursing Forum. 2005;32(3):661-7.
  • 24.Mitchell SA, Beck SL, Hood AE, Moore K, Tanner ER. Putting evidence into practice: evidence-based interventions for fatigue during and following cancer and its treatment. Clinical Journal of Oncology Nursing. 2007;11(1):99-113. http://dx.doi.org/10.1188/07.CJON.99-113.
  • 25.Cramp F, Byron-Daniel J. Exercise for the management of cancer-related fatigue in adults. The Cochrane Database of Systematic Reviews. 2012;11:CD006145http://dx.doi.org/10.1002/14651858.CD006145.pub3.
  • 26.Seo YM, Oh HS, Seo WS, Kim HS. Comprehensive predictors of fatigue for cancer patients. Journal of Korean Academy Nursing. 2006;36(7):1224-31.
  • 27.Dirksen SR, Belyea MJ, Epstein DR. Fatigue-based subgroups of breast cancer survivors with insomnia. Cancer Nursing. 2009;32(5):404-11. http://dx.doi.org/10.1097/NCC.0b013e3181a5d05e.
  • 28.Guest DD, Evans EM, Rogers LQ. Diet components associated with perceived fatigue in breast cancer survivors. European Journal of Cancer Care. 2013;22(1):51-9. http://dx.doi.org/10.1111/j.1365-2354.2012.01368.x.
  • 29.Lee YH, Tsai YF, Lai YH, Tsai CM. Fatigue experience and coping strategies in Taiwanese lung cancer patients receiving chemotherapy. Journal of Clinical Nursing. 2008;17(7):876-83. http://dx.doi.org/10.1111/j.1365-2702.2007.02021.x.
  • 30.Minton O, Richardson A, Sharpe M, Hotopf M, Stone P. A systematic review and meta-analysis of the pharmacological treatment of cancer-related fatigue. Journal of the National Cancer Institute. 2008;100(16):1155-66. http://dx.doi.org/10.1093/jnci/djn250.

Figure & Data

References

    Citations

    Citations to this article as recorded by  
    • Pre-post analysis of a social capital-based exercise adherence intervention for breast cancer survivors with moderate fatigue: a randomized controlled trial
      Sue Kim, Yun Hee Ko, Yoonkyung Song, Min Jae Kang, Hyojin Lee, Sung Hae Kim, Justin Y. Jeon, Young Up Cho, Gihong Yi, Jeehee Han
      Supportive Care in Cancer.2020; 28(11): 5281.     CrossRef

    Download Citation

    Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

    Format:

    Include:

    A Test for Psychobiologic Entropy Model on Cancer Related Fatigue among Patients with Solid Tumors
    Korean J Adult Nurs. 2016;28(1):1-12.   Published online February 29, 2016
    Download Citation
    Download a citation file in RIS format that can be imported by all major citation management software, including EndNote, ProCite, RefWorks, and Reference Manager.

    Format:
    • RIS — For EndNote, ProCite, RefWorks, and most other reference management software
    • BibTeX — For JabRef, BibDesk, and other BibTeX-specific software
    Include:
    • Citation for the content below
    A Test for Psychobiologic Entropy Model on Cancer Related Fatigue among Patients with Solid Tumors
    Korean J Adult Nurs. 2016;28(1):1-12.   Published online February 29, 2016
    Close

    Figure

    • 0
    • 1
    A Test for Psychobiologic Entropy Model on Cancer Related Fatigue among Patients with Solid Tumors
    Image Image
    Figure 1. Hypothetical model from the Winningham's psychobiological-entropy model.
    Figure 2. Path diagram for the modified model.
    A Test for Psychobiologic Entropy Model on Cancer Related Fatigue among Patients with Solid Tumors

    Descriptive Statistics of the Observed Variables (N=202)

    Variables Range M±SD Skewness Kurtosis
    Diarrhea - 0.63±1.52 2.88 8.25
    Pain 0~10 1.86±2.62 1.20 0.17
    Dyspnea 1~5 0.43±1.07 2.51 5.52
    Nausea/vomiting 0~4 0.33±0.63 2.51 6.71
    Anxiety 0~3 0.71±0.57 0.74 -0.06
    Depression 0~3 1.01±0.63 0.41 -0.50
    Feelings of social isolation 1~5 2.42±0.72 0.26 -0.24
    Insomnia 0~4 1.06±0.90 0.94 0.17
    Nutritional status 1~4 1.96±0.99 0.86 0.46
    Hemoglobin - 11.64±1.63 -0.26 0.00
    Adjustment 1~4 2.75±0.47 -0.42 -0.22
    Fighting spirit 1~4 2.34±0.51 -0.74 0.91
    Hopeless 1~4 2.66±0.69 -0.31 -0.26
    Fatalistics 1~4 2.36±0.76 -0.18 -0.72
    Anxious preoccupation 1~4 2.57±0.65 -0.30 -0.01
    Physical activity 1~3 1.59±0.63 0.61 -0.58
    Fatigue 0~10 3.34±2.39 0.44 -0.78
    Fatigue level 0~10 4.00±2.54 0.13 -1.01
    Fatigue impact 0~10 3.01±2.59 0.56 -0.77

    Goodness of Model Fit Indices (N=202)

    Model df x2 (p) TLI CFI RMSEA SRMR
    Criterion ≥.00 Low (≥.05) ≥.90 ≥.90 ≤.08 ≤.08
    Hypothetical model 31 164.18 (<.001) .71 .80 .15 .16
    Modified model 30 65.80 (<.001) .92 .95 .08 .07

    TLI=Tuker-Lewis index; CFI=comparative fit index; RMSEA=root mean square error of approximation; SRMR=standardized root mean square residual.

    Effects of Predictive Variables in the Modified Model (N=202)

    Endogenous variables Exogenous variables β (p) SE CR (t-value) SMC SDE (p) SIE (p) STE (p)
    Primary symptoms Biological energy -.28 (<.001) ) .04 -4.02 .311 -.28 (.001) - -.28 (.001)
    Adaptive energy -.42 (<.001) ) .06 -5.35   -.42 (.003) - -.42 (.003)
    Physical activity Biological energy .05 (.511) .05 0.66 .053 .05 (.511) .06 (.005) .11 (.144)
    Adaptive energy -.05 (.595) .08 -0.53   -.05 (.587) .09 (.010) .05 (.559)
    Primary symptoms -.23 (.019) .12 -2.34   -.23 (.012) - -.23 (.012)
    Fatigue Biological energy - - - .490 - -.20 (.001) -.20 (.001)
    Adaptive energy - - -   - -.29 (.003) -.29 (.003)
    Primary symptoms .69 (<.001) ) .34 9.85   .69 (.003) .01 (.165) .70 (.003)
    Physical activity -.06 (.313) .23 -1.01   -.06 (.261) - -.06 (.261)

    β=standardized regression weights; SE=standard errors; CR=critical ratios; SMC=squared multiple correlations; SDE=standardized direct effects; SIE=standardized indirect effects; STE=standardized total effects.

    Table 1. Descriptive Statistics of the Observed Variables (N=202)

    Table 2. Goodness of Model Fit Indices (N=202)

    TLI=Tuker-Lewis index; CFI=comparative fit index; RMSEA=root mean square error of approximation; SRMR=standardized root mean square residual.

    Table 3. Effects of Predictive Variables in the Modified Model (N=202)

    β=standardized regression weights; SE=standard errors; CR=critical ratios; SMC=squared multiple correlations; SDE=standardized direct effects; SIE=standardized indirect effects; STE=standardized total effects.

    TOP